❓Почему кто-то может предпочесть иерархическую кластеризацию вместо кластеризации на основе разбиения
1. Многоуровневая структура кластеров Иерархические методы способны выявлять вложенные структуры: можно увидеть, как малые кластеры объединяются в более крупные. Это особенно полезно, если данные имеют естественную иерархию.
2. Гибкость при выборе количества кластеров В отличие от методов типа K-средних, где нужно заранее задать число кластеров, иерархическая кластеризация позволяет определить их после построения, анализируя дендрограмму (древовидное представление).
3. Хороша для анализа и интерпретации Иерархическая кластеризация часто применяется в задачах, где важно понять структуру и взаимосвязи между объектами — например, в биоинформатике (кластеризация генов), лингвистике (группировка слов), маркетинге (иерархия клиентов).
⚠️Ограничения:
➡️ Сложность по вычислениям: стандартные алгоритмы имеют сложность $O(n^2)$ по памяти и времени, что делает их неэффективными для больших наборов данных. ➡️ Чувствительность к шуму и выбросам: особенно при использовании метрик расстояния без устойчивости к выбросам.
❓Почему кто-то может предпочесть иерархическую кластеризацию вместо кластеризации на основе разбиения
1. Многоуровневая структура кластеров Иерархические методы способны выявлять вложенные структуры: можно увидеть, как малые кластеры объединяются в более крупные. Это особенно полезно, если данные имеют естественную иерархию.
2. Гибкость при выборе количества кластеров В отличие от методов типа K-средних, где нужно заранее задать число кластеров, иерархическая кластеризация позволяет определить их после построения, анализируя дендрограмму (древовидное представление).
3. Хороша для анализа и интерпретации Иерархическая кластеризация часто применяется в задачах, где важно понять структуру и взаимосвязи между объектами — например, в биоинформатике (кластеризация генов), лингвистике (группировка слов), маркетинге (иерархия клиентов).
⚠️Ограничения:
➡️ Сложность по вычислениям: стандартные алгоритмы имеют сложность $O(n^2)$ по памяти и времени, что делает их неэффективными для больших наборов данных. ➡️ Чувствительность к шуму и выбросам: особенно при использовании метрик расстояния без устойчивости к выбросам.
Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.
Библиотека собеса по Data Science | вопросы с собеседований from hk